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Abstract

Parallel computation for thermal convective flows in cavit ics with
adiabatic horizontal boundaries and driven by differential heating of
the two vertical end walls, is investigated using the Intel Paragon, 1 n -
tel Touchstone 1 delta, and Cray 1'3D. A parallel comput ation code has
beenimplemented by using a finite-diffcmlcc method with a multigrid
elliptic solver anda Dufort-Frankel scheme. The domain decomposi-
tion techniques are discussed in detail. The pa rallel code is numeri-
cally stable, computationally efficient, and portable to various parallel
architectures which support either PVMor NX libraries for communi-
cations, Iinally, numerical results for various Rayleigh numbers and
Prandtl numbers arc presented.

1. INTRODUCTION

Convective motions driven by lateral temperature gradients in cavitics arce
important inmany areas of interest in indust ry and in nat ure. Applications
include heating and ventilation control in building design and construction,
cooling systcins for nuclear reactors inthenuclear industry, solar-cnergy col-
lectors inthe power industry and some other areas. Ducto the wide range of
applications, studies of natural convection flow andhcat transfer have been
vigorously pursued for imany years. A typical modecl of convectiondriven by
a lateral thermal gradient consists of a two dimensional rectangular cavity
with the two vertical end walls held at di {lerent constant temperatures. In
order to dctermine the flow structure and heat transfer across cavities with
diflerent physical propertics, numcrous analylical, experimental and compu-
tational techniques have beenused [1] [2] [4] [5] . The present study will
focus onnumerical simulation on large or smallaspect ratios I cavity flows
(. >>1, or L. << 1) with various Prandtl numbers and Rayleigh numbers
by several parallel systems [3] [7] {8] [9].



2. MATHEMATICAL FORMULATION

The flow domain is a reclangular cavity of length [ and height /. The appro-
priatc governi ngequations, subject. to the Boussinesqapproximation, can be
written in non-dimensional form as
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arc the Prandtl nwinber and the Rayleigh number respectively. Here the
pressure has been eliminated and
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is the vorticity, with the two Jacobians given by
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The boundary conditions on the cavity walls arc
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for insulated walls, where ],:% is the aspect ratio of the cavity.

The equations possess an exact parallel-flow solution [3] [8] of a shallow
cavity as:
T=z+ ¢ + R]’(2), ¥=11"(z) (9)
where g ] | |
zn_)
],v — 4 ’*23 o ]0
()= 390 ~38% T 27 1440 (10)
1= ¥, ¢ is a constant which is determined by a full solution of the end-zone
problems which will be discussed inthe next paragraph  Tor a tall cavity

case, the paralel core structureis given as [1]:

T="T(z), ¢p=Alr(), (0<z<l, (11)
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and A is the Raylcigh number based on the cavity length,

For a shallow cavity , the following end-zone problem will be solved nu-
merically [3]: o7
P 0 (z=1)
Semi- oo region T ~a+c+ 131'(2)
Boussinesq cqns. apply 1 ~ 1, 1"(2)
Paramcters o, Iy = /L (2 — o0)
oT
Oz
and a end-zone problem of’ a tall cavily canbe formulated by a similar ap-
proach.
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3. NUMERICAL APPROACH AN:) PARALLEL COMPUTING
TECHNIQUES

The finite difference method is used for the whole computation. 1 Julort-
Irankel scheme is used for the vorticity (1) and the energy (3) equations,
which is anexplicit, tljrcc-layer method and has s{m)d-order accuracy. And
the Multigrid immethod [6] is used for the Poisson cquation (2). It has proven
an cffcective and fast 11 iethod. In present. code, a complete V-Cycle scheme
onfour-level grids is used. T'he outer boundary conditions (9) and (11) were
used for thcend-zone problems of shallow andtall cavities respectively in
the computation.

In the present study, the Intel Touchstone Delta, the Intel Paragon XP/S and
the Cray 13D parallel systems were used for various computing experiments.
In order {o implement a parallel code with Dufort- Frankel-Multigrid method
tonatural convective flow problems inrectangular cavities, a two dimensional
original fine Mesh is partitionedinto blocks of consccutive €olummns (L >> 1)
or rows (1,<< 1 ) anddistributed onto a lincar array of processors (Figure 1
for a shallow cavity). This isa natural way for dala partitionwiththe above
geometry as thc comimnunication among subdomains nceds to be minimized.
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Figure 1: Data partitionon a shallow cavily with n processors

Communications will be encountered during the whole computation by us-
ing domain decomposition techniques. The major part of commmunications is
that cach subdomain needs to exchange information with its neighbors and
this is donc by direct message-passing NXor PVM  software.




4. NUMERICAL RESULTS

Numecrical resulls arc obtained for various Rayleigh nuimbers and Prandtl
numbers ina whole cavity or in semi-infinite regions of bothtall arid shallow
cavitics. InIligure 2, a numerical solution for alarge aspect ratio case is pre-
sented by the contour plots of stream function, vorticity, and temperature,
whichisin good argreement with the instability analysis. Here a miesh size of
16 X 2048 was USCd for the computation. hiorder to compare the performance
011 cachsystem, 16 processors were used for the parallel code with thie above
nut nerical modcl. The computation results arc sh@wé@)n ‘I’able 1, whichlists
the total CPU time 011 the lest problemn for the three systems. The Cray
“1'311 gives the best performance, and the Paragon shows better performance
than the Delta. By various tests on the parallel systems and comparisons
with some previous results, the parallel code is proven numerically stable,
cfficient, and reliable.

Parameters System
Mecsh = 64 x 1024 | Intel Touchstone Delta
It = 104,00-=9.03333| Intel Paragon
L =16 sray 13D

CPU Time(s)
1099 o
824
197

‘1'able 1: CPU times (scconds) using 16 nodes on the Delta, the Paragon,
arid the Cray '1'31) for thie problem with paramecters noted inthe 1’ able.

The profiles inligure 3 arc the scaling performance of parallel computation
code for natural convective problems. Various meshes have been used with
a test liloclcl of I¢y= 400, o= 0.733, L.=64. The largest problem has
a global grid of 256 x 32, 768 distributed 011 512 processors, which has a
total unknowns 41,744,384. Figurc 3(a) shows theratio of executiontime
T'(n)/7'(1) viathenumber of processors, and Figure 3(b) shows the scaling
performance for large global grids 011 the Cray ‘1'31). Thesc figures show that
the speed up fromm1 node 10128 nodes goes wcyy, but starts to slow down
when more processors come to play. It will be no loniger the best strategy to
partition the computational domain int o blocks of columms if the number of
processors is much larger thanthe aspect r atio I of a cavity. Inthis case, 2D
partitioning should be applied, which will be considered in our future work.

5. CONCLUSIONS

The present end-zone problems contain only two paramecters, f2;and o, in-
stcad of the three-parameter problem considered in numerical simulation of
the full cavity flow [2] [5]. This approach canbe used to provide approxima-
tions to the Nusselt number for all aspect ratios /. provided I is sufliciently
large for the conductliveregime to apply in the core. Thisis asignificant
advantage of thcasymptotic methods adopted here. And for asmall aspect




ratio, while the asymptotic structures arc no longer valid, the code also works
wc]] for simulating a whole cavity flow. Thespeedup goes very well for cavity
flows with a large aspcct ratio, so the results can be used for comparing with
some asymptotic theorics based on large aspect ratios. The Cray 13D gives
the best performance among the three machines. More work on miuch higher
Rayleigh number problems will be considered on parallel systems, and work
on 31) thermal convective flows isin the progress.

The rescarch was carried out by the Jet I'repulsion lLaboratory, California
Institute of Technology, and was sponsored by the National Rescarch Coun-
cil and the National Acronautics and Space Administration while one of the
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Figure 2: Contour plots for (a) stream function, (b) vorticity, (c) temperature for
the insulating boundaries with Pr=6.983 , Ra=80,000 and 1.=: 128.
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Figure 3: (a) Speed up of the paralel code on the Cray T3D. (b) Scaling
performance on the Cray T3D.




